Knowledge-Aided Non-Homogeneity Detector for Airborne MIMO Radar STAP

T. Wang, Y. Zhao, J. Wang

Knowledge-Aided Non-Homogeneity Detector for Airborne MIMO Radar STAP

Číslo: 1/2017
Periodikum: Radioengineering Journal
DOI: 10.13164/re.2017.0345

Klíčová slova: Airborne multiple-input multiple-output (MIMO) radar, space-time adaptive processing (STAP), knowledge-aid (KA), general inner product nonhomogeneity detector (GIP NHD), outliers, Vysílací radar s více vstupy s více vstupy (MIMO), prostorově adaptivní zpracování (STAP), znalostní pomoc (KA), obecný detektor nehomogenity vnitřního produktu (GIP NHD)

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: The target detection performance decreases in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP) when the training samples contaminated by interference-targets (outliers) signals are used to estimate the covariance matrix. To address this problem, a knowledge-aided (KA) generalized inner product non-homogeneity detector (GIP NHD) is proposed for MIMO-STAP. Firstly, the clutter subspace knowledge is constructed by the system parameters of MIMO radar STAP. Secondly, the clutter basis vectors are utilized to compose the clutter covariance matrix offline. Then, the GIP NHD is integrated to realize the effective training samples selection, which eliminates the effect of the outliers in training samples on target detection. Simulation results demonstrate that in non-homogeneous clutter environment, the proposed KA-GIP NHD can eliminate the outliers more effectively and improve the target detection performance of MIMO radar STAP compared with the conventional GIP NHD, which is more valuable for practical engineering application.