Anotace:
This paper investigates a dual-hop satellite-marine communication network that employs mixed radio-frequency/underwater wireless optical communication (RF/UWOC). The study focuses on investigating the impacts of non-zero pointing errors and the additive white generalized Gaussian noise (AWGGN) on the dual-hop system. To address the challenge of computing the probability density function (PDF) for the UWOC system with non-zero boresight error, we apply the Laplace transformation and the generalized integro exponential function. Next, we utilize the generalized Gaussian noise to calculate the signal-to-noise ratio (SNR) and the conditional bit error rate (BER). Then, we present system performance metrics such as the outage probability (OP) and BER. We also calculate the asymptotic analysis of the OP and BER by considering poles coinciding, resulting in the proposal of four asymptotic formulas to gain additional insights into the diversity gain. Finally, we provide simulation results that analyze the performance of the proposed satellite-marine network with different system parameters, such as boresight displacements and bubble levels, and validate the accuracy of the numerical results.