Anotace:
The use of single time-instance features, where entire speech utterance is used for feature computation, is not accurate and adequate in capturing the time localized information of short-time transient distortions and their distinction from plosive sounds of speech, particularly degraded by impulsive noise. Hence, the importance of estimating features at multiple time-instances is sought. In this, only active speech segments of degraded speech are used for features computation at multiple time-instances on per frame basis. Here, active speech means both voiced and unvoiced frames except silence. The features of different combinations of multiple contiguous active speech segments are computed and called multiple time-instances features. The joint GMM training has been done using these features along with the subjective MOS of the corresponding speech utterance to obtain the parameters of GMM. These parameters of GMM and multiple time-instances features of test speech are used to compute the objective MOS values of different combinations of multiple contiguous active speech segments. The overall objective MOS of the test speech utterance is obtained by assigning equal weight to the objective MOS values of the different combinations of multiple contiguous active speech segments. This algorithm outperforms the Recommendation ITU-T P.563 and recently published algorithms.