Anotace:
In order to study the cracking of prestressed reinforced concrete T-shaped beam structures, the authors planned and carried out a full-scale experiment with five variable factors. The following factors were chosen as variable factors: the relative span of the shear, the ratio of the table overhang width to the thickness of the beam rib, the ratio of the table overhang thickness to the working height of the beam section, the coefficient of transverse reinforcement, the level of prestressing in the working reinforcement. The article describes the cracking process and the destruction of test beams. It was found that the loading level of an opening of inclined cracks is 53% larger than the loading level of a normal crack opening. Mathematical models of bending moments and transverse forces of cracking were built using the “COMPEX” software. Also, the mathematical models of the crack opening width and the projection length of a dangerous inclined crack were obtained. These models are based on the experimental data. Analysing the obtained models, the complex influence of variable factors on the main parameters of crack formation and crack resistance was established. In particular, it was found that the prestress level in the working reinforcement has the greatest effect on the bending moment of cracking. In this case, the value of the shear force of cracking significantly depends on both the prestressing level in the reinforcement and the relative span of the shear. On the basis of the experimental data, the empirical expression is obtained for determining the projection of a dangerous inclined crack for prestressed reinforced concrete T-shaped beams. The resulting equation can be used to calculate a shear reinforcement.