Jana Albrechtová, Libor Sedlecký, Věra Čížková
Fotomorfogeneze – teoretické základy pro výuku biologie rostlin na školách
Číslo: 4-5/2017
Periodikum: Biologie-Chemie-Zeměpis
DOI: 10.14712/25337556.2017.4.3
Klíčová slova: červené světlo (R), fotoreceptory, fotosenzorické receptory, fototropiny, fototropizmus, fytochromy, infračervené záření (IR), kryptochromy, modré světlo (B), optimalizace výnosu plodin, pohyby rostlin, receptor UVR8, růst a vývoj rostlin, ultrafialové (UV) záření, vedení signálu, ZTL/FKF1/LKP2 proteiny, blue light (B), cryptochromes, infrared radiation (IR), photoreceptors, photosensoric receptors, phototropins, phytochromes, plant growth and development, plant movements, receptor UVR8, ultraviolet (UV) radiation, red light (R), signal transduction, ZTL/FKF1/LKP2 proteins
Pro získání musíte mít účet v Citace PRO.
and structure, ontogenetic patterns as well as movements of plants, plant parts and/or organelles. During photomorphogenesis,
plants respond to the quality, intensity and/or direction of radiation, to which they are exposed, by changes in plant development,
growth and/or movement. This is a completely separate process from photosynthesis where light is used as a source of energy
and for building of plant biomass, while in photomorphogenesis radiation plays a role of a signal.
Photomorphogenesis is mediated by a sophisticated network of photoreceptors, which can be responsive to different kind of
radiation and interfere in their action on plant photomorphogenetic processes. The most important families of photoreceptors
are: 1) phytochromes sensing particularly in red visible light and being crucial in numerous photomorphogenetic processes;
2) cryptochromes, phototropins and recently discovered ZTL/FKF1/LKP2 proteins sense blue light and UV-A, while 3) very
recently discovered UVR8 receptor percieve UV-B radiation. These photoreceptors interact in accord to orchestrate numerous
developmental and physiological processes, e.g. germination, deetiolization, shade avoidance, phototropism, leaf development,
flowering, movement of chloroplasts, to optimize their location in order to perceive the optimum irradiance, etc. .
Due to photoreceptors, plants perceive their neighbours and can avoid shading by them through photomorphogenetic
processes. In artificial greenhouse cultivation systems, it is possible to efficiently manipulate artificial radiation in order to
optimize quality and quantity of plant biomass and yield. Nowadays, due to technological progress it is possible to cultivate
plants not only in winter but also in polar regions during polar night. We can also manipulate radiation quality (e.g. using
LED lighting), to induce better plant resistance to both abiotic factors such as drought, herbivores or pathogens. Also we
can positively affect yield quality, e.g. to lower nitrates or increase anthocyanins in yield biomass. In addition, we can affect
timing of flowering, seed germination etc.
Photomorphogenesis is only marginally covered by all available Czech textbooks for high schools if at all and no practical
experimental protocols are included. In the present paper we describe radiation sensing by plants via photoreceptors, give basic overview of photomorphogenetic processes and demonstrate a possible use of photomorphogenetic processes in
agricultural and horticultural practice. In the subsequent paper/s we will describe selected photomorphogenetic processes in
more detail giving the background to protocols for specific photomorphogenetic experiments.