Tereza Sustrova
A Suitable Artificial Intelligence Model for Inventory Level Optimization
Číslo: 25/2016
Periodikum: Trendy ekonomiky a managementu
DOI: 10.13164/trends.2016.25.48
Klíčová slova: Lot-sizing problem, inventory management, artificial neural network, Lot-sizing problém, řízení zásob, umělé neuronové sítě
Pro získání musíte mít účet v Citace PRO.
Methodology/methods: Methods used in the paper consists especially of artificial neural networks and ANN-based modelling. For data analysis and preprocessing, MS Office Excel software is used. As an instrument for neural network forecasting MathWorks MATLAB Neural Network Tool was used. Deductive quantitative methods for research are also used.
Scientific aim: The effort is directed at finding whether the method of prediction using artificial neural networks is suitable as a tool for enhancing the ordering system of an enterprise. The research also focuses on finding what architecture of the artificial neural networks model is the most suitable for subsequent prediction.
Findings of the research show that artificial neural networks models can be used for inventory management and lot-sizing problem successfully. A network with the TRAINGDX training function and TANSIG transfer function and 6-8-1 architecture can be considered the most suitable for artificial neural network, as it shows the best results for subsequent prediction..
Conclusions resulting from the paper are beneficial for further research. It can be concluded that the created model of artificial neural network can be successfully used for predicting order size and therefore for improving the order cycle of an enterprise.