Experimental characterization of a magnetohydrodynamic power generator under dc arc plasma

Ayokunle Oluwaseun Ayeleso

Experimental characterization of a magnetohydrodynamic power generator under dc arc plasma

Číslo: 1/2018
Periodikum: Acta Polytechnica
DOI: 10.14311/AP.2018.58.0001

Klíčová slova: magnetohydrodynamics; electric power; rectangular MHD generator; DC arc plasma; terminal voltages; middle electrodes; load resistors; conventional systems, magnetohydrodynamika; elektrická energie; obdélníkový generátor MHD; DC oblouková plazma; koncové napětí; střední elektrody; zátěžové odpory; konvenční systémy

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: The generation of electric power through the conventional systems (thermal and hydroelectric) is no longer sufficient to meet the increasing industrial and commercial usage. Therefore, an alternative energy conversion system is currently being sought. The aim of the presented study is to develop a direct energy conversion system (Magnetohydrodynamics, MHD generator) to generate electric power using plasma. Additionally, the generator electric response is investigated based on the Faraday’s principle of electromagnetism and fluid dynamics. For this purpose, a rectangular MHD generator prototype with segmented electrodes was constructed and subjected to continuous plasma from a DC arc source at test facilities available in the Western Cape region (South Africa). Subsequently, the terminal voltages at the middle-electrodes were measured one after another across 1, 100 and 470 Ω load resistors. In all experiments, the absolute time-averages of the measured terminal voltage across each load resistor were similar, which indicates a generation of power. The maximum power of the order 0.203mW was obtained when 1 Ω resistor was connected to the middle-electrodes. Conclusively, these results validate the measurement approach of the MHD generator with segmented electrodes and could be used to design a large MHD unit that can be incorporated to the existing conventional thermal plant to improve their cyclic thermal efficiency.