Time-Frequency Represetation of Radar Signals Using Doppler-Lag Block Searching Wigner-Ville Distribution

Muhammad Noor Muhammad Hamdi, Ahmad Zuri Sha'ameri

Time-Frequency Represetation of Radar Signals Using Doppler-Lag Block Searching Wigner-Ville Distribution

Číslo: 3/2018
Periodikum: Advances in Electrical and Electronic Engineering
ISBN: 1804-3119
DOI: 10.15598/aeee.v16i3.2633

Klíčová slova: Adaptive procedure; auto-terms; Cramer-Rao lower bound; cross-terms; kernel function; quadratic time-frequency distribution, Adaptivní postup; auto-termíny; Cramer-Rao spodní hranice; cross-termíny; funkce jádra; kvadratická distribuce časových frekvencí

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: Radar signals are time-varying signals where the signal parameters change over time. For these signals, Quadratic Time-Frequency Distribution (QTFD) offers advantages over classical spectrum estimation in terms of frequency and time resolution but it suffers heavily from cross-terms. In generating accurate Time-Frequency Representation (TFR), a kernel function must be able to suppress cross-terms while maintaining auto-terms energy especially in a non-cooperative environment where the parameters of the actual signal are unknown. Thus, a new signal-dependent QTFD is proposed that adaptively estimates the kernel parameters for a wide class of radar signals. The adaptive procedure, Doppler-Lag Block Searching (DLBS) kernel estimation was developed to serve this purpose. Accurate TFRs produced for all simulated radar signals with Instantaneous Frequency (IF) estimation performance are verified using Monte Carlo simulation meeting the requirements of the Cramer-Rao Lower Bound (CRLB) at SNR > 6 dB.