Anotace:
In this paper, congestion-aware routing and fuzzy-based rate controller for wireless sensor networks (WSNs) is proposed. The proposed method tries to make a distinction between locally generated data and transit data by using a priority-based mechanism which provides a novel queueing model. Furthermore, a novel congestion-aware routing using greedy approach is proposed. The proposed congestion-aware routing tries to find more affordable routes. Moreover, a fuzzy rate controller is utilized for rate controlling which uses two criteria as its inputs, including congestion score and buffer occupancy. These two parameters are based on total packet input rate, packet forwarding rate at MAC layer, number of packets in the queue buffer, and total buffer size at each node. As soon as the congestion is detected, the notification signal is sent to offspring nodes. As a result, they are able to adjust their data transmission rate. Simulation results clearly show that the implementation of the proposed method using a greedy approach and fuzzy logic has done significant reduction in terms of packet loss rate, end-to-end delay and average energy consumption.