Anotace:
In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Sliding Discrete Fourier Transform (SDFT) instead of the Fast Fourier Transform (FFT). To evaluate the performance, two versions of the proposed hybrid method are implemented, one with the FFT and the other with the SDFT. The proposed method is simulated for cooperative and non-cooperative scenarios and investigated under a multipath fading channel. Obtained results are evaluated by comparing them with other methods including: cyclostationary feature detection (CFD), energy detector and traditional hybrid. The simulation results show that the proposed method with the FFT and the SDFT successfully reduced the complexity by 20% and 40% respectively, when 60 sensing samples are used with an acceptable degradation in the detection performance. For instance, when Eb/N0 is 0 dB , the probability of the detection of Pd is decreased by 20 % and 10% by the proposed method with the FFT and the SDFT respectively, as compared with the hybrid method existing in the literature.