Anotace:
Models in behavioural relationship marketing suggest that relations between the customer and the company change over time as a result of the continuous encounter. Some theoretical models have been put forward concerning relationship marketing, both from the standpoints of consumer behaviour and empirical modelling. In addition to these, this study proposes the hidden Markov model (HMM) as a potential tool for assessing customer relationships. Specifically, the HMM is submitted via the framework of a Markov chain model to classify customers relationship dynamics of a telecommunication service company by using an experimental data set. We develop and estimate an HMM to relate the unobservable relationship states to the observed buying behaviour of the customers giving an appropriate classification of the customers into the relationship states. By merely accounting for the functional and unobserved heterogeneity with a two-state hidden Markov model and taking estimation into account via an optimal estimation method, the empirical results not only demonstrate the value of the proposed model in assessing the dynamics of a customer relationship over time but also gives the optimal marketing-mixed strategies in different customer state.