Anotace:
The expediency and prospects of using secondary fish raw materials from silver carp in the structuring agents technology have been substantiated. The combination of secondary fish raw materials and seaweed with different mechanisms of gelation has a targeted effect on the organoleptic, structural-mechanical, and physicochemical properties of food products. Accordingly, the expediency of adding the Black Sea alga cystoseira (2%) to optimize the mineral composition of the structuring agents and increase their jelly-making properties was established. Using experimental studies and multicriteria optimization, the optimal ratio of secondary fish raw materials – 40%; water – 60% and rational heat treatment – 150 min, at a temperature of 85 – 100 °C has been determined. An analysis and comparison of various preservation methods have confirmed the expediency of using the freeze-drying method of drying fish broths for the production of structuring agents, which allows to preserve of the original properties of the product, biologically active substances, reduce the mass of the dried product and increase the shelf life of the structuring agents. The optimal storage conditions have been determined – the ready-made structuring agents were packed in three-layer paper kraft bags and stored in a cool dry place at a temperature of 22 ±2 °C and relative humidity of no more than 70% for 12 months. It was found that the physical and chemical indicators of the structuring agents depend on the features of the structure, amino acid composition of fish collagen. The presence of the overwhelming number of high-molecular-weight molecules in the composition of the structuring agents and the preservation of the native structure determine high indicators of dynamic viscosity, dissolution time, and strength. As a result of the research, it was revealed that the high protein content largely depends on the amount of collagen in the secondary fish raw material, which has a positive effect on the gelling properties of the product being created.