Modification of the properties of milk-fat emulsions with the phase structure of "oil in water" in the dependence on the mass part of the lipoid and the stabilizing systems
Anotace:
The composition and properties of cream with fat levels from 30% to 70% were investigated. It has been established that the decrease of fat level and, accordingly, the increase of plasma level in the cream leads to significant changes in the physicochemical parameters of the fat emulsion. Accordingly, the production of low-fat dairy products requires adjustment of the cream properties. It has been shown that using different doses of structure stabilizers: QNA colloid as a consistency stabilizer in the amount of from 1 to 2% and the Dimodan emulsifier U/G – from 0 to 1 % (Danisco, Denmark) changes the physicochemical properties (effective viscosity, sedimentation stability) and organoleptic properties (consistency, taste) of cream with fat level 40%. It has been conducted mathematical modeling, aimed to calculate dosing for improving the properties of milk-fat emulsions, structure formation and further ensuring of the necessary consistency of cream pastes. Optimal doses of colloid QNA as a consistency stabilizer and a U/G Dimodan emulsifier have been determined. It has been established that their content should be 1,0% and 0,5%, relatively, for pastes with a fat level of 40%. The effectiveness of the joint action of consistency stabilizers and emulsifiers in obtaining milk-fat emulsions were defined by the level of effective viscosity. Moreover, the use of the emulsifier had less effect on the effective viscosity of the milk-fat emulsions. It has been found that using the structure stabilizers could improve the formation of low-fat products and the formation of the desired paste-like consistency of high-fat cream with a fat level of 70%. Thus, it is possible to adjust the composition and properties of raw material as a basis for milk-fat emulsions by optimizing the ratio of structure stabilizers. Comparative evaluation of the physicochemical properties of milk-fat emulsions and high-fat cream makes it possible to predict their potential for conversion into a creamy paste with a given consistency.